Fwd: [TCCC-ANNOUNCE] CFP: IEEE Workshop on Information Quality and Quality of Service for Pervasive Computing (IQ2S 2018) - co-located with IEEE Percom 2018
-------- Weitergeleitete Nachricht -------- Betreff: [TCCC-ANNOUNCE] CFP: IEEE Workshop on Information Quality and Quality of Service for Pervasive Computing (IQ2S 2018) - co-located with IEEE Percom 2018 Datum: Thu, 14 Sep 2017 10:45:47 +0200 Von: Luca Bedogni luca.bedogni4@UNIBO.IT Antwort an: Luca Bedogni luca.bedogni4@UNIBO.IT An: tccc-announce@COMSOC.ORG
Please accept our apologies if you receive multiple copies of this CFP.
---------------------------------------------------------------------- CALL FOR PAPERS
The Ninth IEEE International Workshop on Information Quality and Quality of Service for Pervasive Computing (IEEE IQ2S-2018) (in conjunction with IEEE Percom 2018) March 19-23, 2018, Athens, Greece http://www.cs.unibo.it/projects/iq2s-2018
**** Paper Submission Deadline --- November 11, 2017 ****
----------------------------------------------------------------------
CALL FOR PAPER:
Pervasive computing provides an exciting paradigm for supporting anywhere anytime services, and is built on the tremendous advances made in a broad spectrum of technologies including wireless communication, wireless and sensor networking, mobile and distributed computing, as well as signal and information processing. Pervasive computing enables computers to interact with the real world in a ubiquitous and natural manner. Quality of service (QoS), related to transmission delay, bandwidth, or packet loss, has been studied in various building blocks in pervasive computing, e.g., different QoS mechanisms are presented for wireless or wired networks; the notion of computational QoS is used for parallel processing. The emerging pervasive computing paradigm, however, is application-driven and mission-critical and the existing QoS notions to do not really match. Quality of Information (QoI) or Information Quality (IQ) of sensor-originated information relates to the fitness of the information for a sensor-enabled application. Harnessing and optimizing QoI of information derived from sensor networks will be key to bringing together information acquisition and processing systems that support the on-demand information needs of a broad spectrum of smart, sensor-enabled applications such as remote real-time habitat monitoring, utility grid monitoring, environmental control, supply-chain management, health care, machinery control, intelligent highways, military intelligence, reconnaissance and surveillance (ISR), border control, and hazardous material monitoring, just to mention a few. The proliferation of smartphone has also enabled the possibility to retrieve data also by users on the move. This data collection paradigm is often called crowdsensing, or crowdsourcing, and builds upon the willingness of users to share data together, which eventually gets aggregated to provide novel services to the community.
Although fascinating, and potentially disruptive, this paradigm inherently carries a set of technical challenges, at various levels and which should be studied by different research communities. At first, to make the data granularity spread enough, the crowd should be sufficiently large. This means that the application which runs on the users’ device has to be optimized, and should not interfere with the normal activity the users want to perform. This raises the challenge of having smart interfaces which communicate with the user only when necessary, along with the battery efficiency, which plays a crucial role being these devices almost always battery powered. Another technical challenge comes from the heterogeneous data aggregation, as data can be in many different shapes, formats, and labeled in different languages. Hence, automatically linking data that comes from different platforms becomes challenging, and again clustering techniques, supervised and unsupervised machine learning algorithms have to be developed to perform such task efficiently.
Achieving the desired “pervasiveness” of mobile applications, which in turns enable to retrieve data for the community, and the assessment of the QoI itself is key. The objective of this workshop (which is unique venue in its scope for the pervasive community) is to provide a forum to exchange ideas, present results, share experience, and enhance collaborations among researchers, professionals, and application developers in various aspects of QoI, QoE, QoS for pervasive computing and crowdsensing in network contexts including wireless, mobile and sensor networks.
Original papers addressing both theoretical and practical aspects of QoI and QoE provisioning in pervasive computing and mobile crowdsensing are solicited. Papers describing experience on real prototype implementations are particularly welcome. Topics of interest addressing the challenging joint aspects of QoI and QoE include:
Joint QoI- & QoS-driven system design and architectural principles Network services (time sync, QoS) for target/event detection, localization, tracking and classification QoI-aware wireless sensor networking Energy-efficient data fusion, sensor fault analysis, sensor data cleansing for task mapping and scheduling Coordinated QoS for cross-layer, cross-application, and cross-node integration (including QoI-QoS integration) Query optimization for event processing in pervasive environments Data and query models for QoI-aware event processing Adaptive QoI and QoS under dynamic environments Trust, security, privacy, and data provenance issues in QoI and QoS QoI characterization, representation, performance metrics, and evaluation QoI and QoS for emerging pervasive computing applications Models of semantics and context in QoI-aware applications Market-based mechanisms to influence QoI Quality of Experience (QoE) issues for pervasive applications Value of information (VoI) and quality of action for sensor/actuator networks Prototype test-bed design, implementation, and field trials Energy efficiency in crowdsensed services and applications Protocols enhancement for crowdsensed services Social Internet of things Big data semantic Data science for crowdsensed services Opportunistic crowdsensed services Rewarding mechanism for crowdsensed services Crowdsensed testbeds and platforms Fog computing for IoT Heterogeneous data aggregation NLP techniques for crowdsensed services Machine learning techniques for data aggregation Machine learning techniques for data classification Privacy for crowdsensed data User behavior classification from public data User activity recognition User profiling
Each accepted workshop paper requires a full PerCom registration (no registration is available for workshops only).
PAPER SUBMISSION All paper should be submitted through EDAS: https://edas.info/newPaper.php?c=23942
Selected high quality papers will be considered for publication in the Elsevier's Pervasive and Mobile Computing (PMC) journal.
ORGANISING COMMITTEE General Chairs Sajal K. Das, Missouri S & T, USA Salil Kanhere, University of New South Wales, Australia
TPC Co-Chairs Luca Bedogni, University of Bologna, Italy Francesco Restuccia, Northeastern University, USA
participants (1)
-
Lars Wolf